skip to main content


Search for: All records

Creators/Authors contains: "Feeley, Kenneth J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. When scientists study plants, they often collect, preserve, and store parts of the plants in a big collection called an herbarium. These plant specimens serve as proof that a species was growing in a certain place at a certain time. Herbaria (“herbaria” is the plural of herbarium) are where scientists describe new plant species and study how different species are related. Herbaria also contain lots of information about where certain plant species grow, what type of habitats species like, and at what time of year plants bloom and make fruits. Finally, herbaria are powerful tools for helping us understand how plants are affected by disturbances like habitat destruction and climate change. For all of these reasons, herbaria allow us to better understand and protect plant species all over the world. To continue benefitting from herbaria, we need to keep collecting plants and make these collections accessible to the world.

     
    more » « less
    Free, publicly-accessible full text available January 18, 2025
  2. For tropical forests to survive anthropogenic global warming, trees will need to avoid rising temperatures through range shifts and “species migrations” or tolerate the newly emerging conditions through adaptation and/or acclimation. In this literature review, we synthesize the available knowledge to show that although many tropical tree species are shifting their distributions to higher, cooler elevations, the rates of these migrations are too slow to offset ongoing changes in temperatures, especially in lowland tropical rainforests where thermal gradients are shallow or nonexistent. We also show that the rapidity and severity of global warming make it unlikely that tropical tree species can adapt (with some possible exceptions). We argue that the best hope for tropical tree species to avoid becoming “committed to extinction” is individual-level acclimation. Although several new methods are being used to test for acclimation, we unfortunately still do not know if tropical tree species can acclimate, how acclimation abilities vary between species, or what factors may prevent or facilitate acclimation. Until all of these questions are answered, our ability to predict the fate of tropical species and tropical forests—and the many services that they provide to humanity—remains critically impaired. 
    more » « less
    Free, publicly-accessible full text available September 1, 2024
  3. The eastern Andean treeline (EATL) is the world’s longest altitudinal ecotone and plays an important role in biodiversity conservation in the context of land use/cover and climate change. The purpose of this study was to assess to what extent the position of the tropical EATL (9°N–18°S) is in near-equilibrium with the climate, which determines its potential to adapt to climate change. On a continental scale, we have used land cover maps (MODIS MCD12) and elevation data (SRTM) to make the first-order assessment of the EATL position and continuity. For the assessment on a local scale and to address the three-dimensional nature of environmental change in mountainous environments, a novel method of automated delineation and assessment of altitudinal transects was devised and applied to Landsat-based forest maps (GLAD) and fine-resolution climatology (CHELSA). The emergence of a consistent longitudinal gradient of the treeline elevation over half of the EATL extent, which increases towards the equator by ~30 m and ~60 m per geographic degree from the south and north, respectively, serves as a first-order validation of the approach, while the local transects reveal a more nuanced aspect-dependent pattern. We conclude that the applied dual-scale approach with automated mass transect sampling allows for an improved understanding of treeline dynamics. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  4. Abstract

    The consequences of rising temperatures for trees will vary between species based on their abilities to acclimate their leaf thermoregulatory traits and photosynthetic thermal tolerances. We tested the hypotheses that adult trees in warmer growing conditions (i) acclimate their thermoregulatory traits to regulate leaf temperatures, (ii) acclimate their thermal tolerances such that tolerances are positively correlated with leaf temperature and (iii) that species with broader thermal niche breadths have greater acclimatory abilities. To test these hypotheses, we measured leaf traits and thermal tolerances of seven focal tree species across steep thermal gradients in Miami’s urban heat island. We found that some functional traits varied significantly across air temperatures within species. For example, leaf thickness increased with maximum air temperature in three species, and leaf mass per area and leaf reflectance both increased with air temperature in one species. Only one species was marginally more homeothermic than expected by chance due to acclimation of its thermoregulatory traits, but this acclimation was insufficient to offset elevated air temperatures. Thermal tolerances acclimated to higher maximum air temperatures in two species. As a result of limited acclimation, leaf thermal safety margins (TSMs) were narrower for trees in hotter areas. We found some support for our hypothesis that species with broader thermal niches are better at acclimating to maintain more stable TSMs across the temperature gradients. These findings suggest that trees have limited abilities to acclimate to high temperatures and that thermal niche specialists may be at a heightened risk of thermal stress as global temperatures continue to rise.

     
    more » « less
  5. We report the rediscovery of the Critically Endangered cloud forest herb Gasteranthus extinctus , not seen since 1985. In 2019 and 2021, G. extinctus was recorded at five sites in the western foothills of the Ecuadorian Andes, 4–25 km from the type locality at the celebrated Centinela ridge. We describe the species’ distribution, abundance, habitat and conservation status and offer recommendations for further research and conservation efforts focused on G. extinctus and the small, disjunct forest remnants it occupies. 
    more » « less
  6. Elevation gradients present enigmatic diversity patterns, with trends often dependent on the dimension of diversity considered. However, focus is often on patterns of taxonomic diversity and interactions between diversity gradients and evolutionary factors, such as lineage age, are poorly understood. We combine forest census data with a genus level phylogeny representing tree ferns, gymnosperms, angiosperms, and an evolutionary depth of 382 million years, to investigate taxonomic and evolutionary diversity patterns across a long tropical montane forest elevation gradient on the Amazonian flank of the Peruvian Andes. We find that evolutionary diversity peaks at mid-elevations and contrasts with taxonomic richness, which is invariant from low to mid-elevation, but then decreases with elevation. We suggest that this trend interacts with variation in the evolutionary ages of lineages across elevation, with contrasting distribution trends between younger and older lineages. For example, while 53% of young lineages (originated by 10 million years ago) occur only below ∼1,750 m asl, just 13% of old lineages (originated by 110 million years ago) are restricted to below ∼1,750 m asl. Overall our results support an Environmental Crossroads hypothesis, whereby a mid-gradient mingling of distinct floras creates an evolutionary diversity in mid-elevation Andean forests that rivals that of the Amazonian lowlands. 
    more » « less
  7. null (Ed.)